

Synergistic Water-Energy Systems to Minimise Carbon Emissions

Fei Liu, Simon Tait, Alma Schellart, Joby Boxall, Martin Mayfield

The University Of Sheffield.

Contents

- Context
- Model Framework
- Results
- Conclusion

- UK has a legally binding 2050 carbon reduction target of 80% on a 1990 baseline.
- UK is not on track to meet its carbon target for 2030 and 2050.
- Ban gas cookers and boilers in new home within 6 years (The Times, Feb 2019).

- Domestic heat demand
 - 28% of the total UK energy demand,
 - 17% of UK's carbon emission.
- This usage is currently static.

• We explore whether assets from water utilities could be linked intelligently with renewable generation sources to deliver further carbon emission reductions to the overall UK emission target.

Model Framework

• A simulation tool has been developed that uniquely integrates:

 To find the optimal energy generation mix to minimise the annual total carbon emissions while meeting residential gas demand.

Synergistic Water-Energy System

Hour

Flow (I/hd/hr) 8 01

TWENTY65

Case Study Approach

Location	Strathclyde	Lincoln	Gloucestershire
	Wind, Solar	Wind, Solar	Wind, Solar
	$(m/s), (kWh/m^2)$	$(m/s), (kWh/m^2)$	$(m/s), (kWh/m^2)$
Min	0; 0	0.51; 0	0; 0
Mean	7.33; 0.10	5.60; 0.13	5.31; 0.12
Max	24.69; 0.98	20.06; 0.96	18; 0.92

- 1000 households
- 3 different locations in the UK

Data

- Half-hourly gas consumption data at residential level was obtained from UK Data Service, then converted to hourly consumption.
- Sum up 1000 randomised households to get a stable demand for a community.
- Hourly wind speed and solar radiation for the year 2009 was obtained from CEDA (Centre for Environmental Data Analysis).

Results

• Fixed service reservoir capacity (1200 m³)

	Solar panel (m ²)	Wind (kWh)
Strathclyde	10998	12465
Lincoln	6933	9997
Gloucestershire	8403	9758

Total carbon emission

Strathclyde	1539 tCO ₂
Lincoln	1512 tCO ₂
Gloucestershire	1507 tCO ₂

- Non-optimised system: 3519.78 tCO₂ (natural gas)
- Optimised System: 56-57% of the17% of UK's CO₂ emission associated with domestic heating

Interesting Seasonal Effects

TWENTY65

Winter:

Dominated by nonrenewables, wind and heat recovery

Summer:

Dominated by heat recovery, wind, solar, still some non-renewables to achieve daily peaks

Concluding Remarks

- Linking water assets, existing renewable technologies and energy distribution at a local scale can give up to 56-57% annual CO₂ reduction.
- Domestic heating estimated to be 17% of UK's annual emissions.
- Developing inter-seasonal storage could obtain a further
 60% reduction if the technology could be delivered.

Future Work

- Model assumptions need to be tested in real urban areas, to study the influence of spatial layout of the urban water systems and existing electricity distribution network.
- We are looking for case study models of water supply systems, urban drainage systems and electricity distribution models!!

White Paper

- Energy use in the UK and within water sector.
- Domestic energy and water consumption.
- Future use of energy and water.

Thank you!

